
ProgDOC - a New Program Documentation System

Volker Simonis and Roland Weiss

Wilhelm-Schickard-Institut f̈ur Informatik, Universiẗat Tübingen
Sand 13, 72076 T̈ubingen, Germany

{simonis,weissr}@informatik.uni-tuebingen.de

Abstract. Though programming languages and programming styles evolve with
remarkable speed today, there is no such evolution in the field of program doc-
umentation. And although there exist some popular approaches like Knuth’s lit-
erate programming system WEB [26], and nowadays JavaDoc [15] or Doxygen
[16], tools for managing software developmentand documentation are not as
widespread as desirable.
This paper analyses a wide range of literate programming tools available during
the past two decades and introducesProgDOC, a new software documentation
system. It is simple, language independent, and it keeps documentation and the
documented software consistent. It uses LATEX for typesetting purposes, supports
syntax highlighting for various languages, and produces output in Postscript, PDF
or HTML format.

1 Introduction

The philosophy ofProgDOC is to be as simple as possible and to pose as less re-
quirements as possible to the programmer. Essentially, it works with any programming
language and any development environment as long as the source code is accessible
from files and the programming language offers a possibility for comments. It is non-
intrusive in the sense that it leaves the source code untouched, with the only exception
of introducing some comment lines at specific places.

TheProgDOC system consists of two parts. A so calledweaverweaves the desired
parts of the source code into the documentation, and ahighlighterperforms the syntax
highlighting for that code. Source code and documentation are mutually independent
(in particular they may be processed independently). They are linked together through
special handles which are contained in the comment lines of the source code and may
be referenced in the documentation.

ProgDOC is a good choice for writing articles, textbooks or technical white papers
which contain source code examples and it proved especially useful for mixed language
projects and for documenting already existing programs and libraries. Some examples
of output produced byProgDOC are available at [45].

The remainder of this paper is organized as follows: The first three sections will
discuss some general aspects of literate programming, give a historical overview of
the existing literate programming tools and present some new approaches for software
documentation. In section 5, theProgDOC system will be introduced and discussed in
detail. Finally, section 6 will end the paper with conclusions and an outlook.

2 Some words on Literate Programming

With an article published 1984 in the Computer Journal [23] Donald Knuth coined the
notion of “Literate Programming”. Since those days for many people literate program-
ming is irrevocable interweaved with Knuth’s WEB [26] and TEX [24] systems.

Knuth justifies the term “literate programming” in [23] with his belief that “... the
time is ripe for significantly better documentation of programs, and that we can best
achieve this by considering programs to be works of literature.” To support this pro-
gramming style, he introduced the WEB system which is in fact both a language and
a suite of utilities. In WEB, the program source code and the documentation are writ-
ten together into one source file, delimited by special control sequences. The program
source can be split into parts which can be presented in arbitrary order. Thetangle

program extracts these code parts from the WEB file and assembles them in the right
order into a valid source file. Another program calledweave combines the documen-
tation parts of the WEB files with pretty printed versions of the code parts into a file
which thereupon can be processed by TEX.

This system has many advantages. First of all, it fulfills the “one source” property.
Because source code and documentation reside in one file, they are always consistent
with each other. Second, the programmer is free to present the code he writes in arbitrary
order, thus simplifying it for a human reader to understand the program. This can be
done by rearranging code parts, but also by using macros inside the code parts, which
can be defined later on in the WEB file. This way a top-down development approach is
supported, in which the structure of a program as a whole is presented in the beginning
and then subsequently refined, as well as a bottom up design, in which a program is
assembled out of low level code fragments defined before.tangle will always expand
these macros at the right place when constructing the source file out of the WEB file.

Another feature of the WEB system is the automatic construction of exhaustive
indexes and cross references byweave . Every code part is accompanied by references
which link it to all other parts which reference or use it. Also, an index of keywords with
respect to code parts is created and the source code is pretty printed for the documenta-
tion part. The best way to convince yourself of WEB’s capabilities is to have a look at
Knuth’s TEX implementation [25]. It was entirely written in WEB and is undoubtfully
a masterpiece of publishing and literate programming.

2.1 WEB and its descendants

Besides its many advantages, the WEB system also has a couple of drawbacks. Many of
them apply only to the original WEB implementation of Knuth and have been corrected
or worked around in numerous WEB clones implemented thereafter. In this section we
will present some of them1 and discuss their enhancements.

One of the biggest disadvantages of WEB was the fact that it was closely tied to
TEX as typesetting system and to Pascal as implementation language. So one of the first

1 Only systems known to the authors will be mentioned here. A more complete overview may
be found at the Comprehensive TEXArchive Network (CTAN) under http://www.ctan.org/tex-
archive/web or at http://www.literateprogramming.org.

439

flavors of WEB was CWEB [27] which extended WEB to C/C++ as implementation lan-
guages. It was implemented by Knuth himself together with Silvio Levy. CWEBx [30]
is an alternative CWEB implementation with some extensions by Marc van Leeuwen.
They both suffer from the same problems like WEB, as they are closely coupled to TEX
and the C programming language.

To overcome these language dependencies, noweb [39] (which evolved from spi-
derWEB) and nuweb [7] have been developed by Norman Ramsey and Preston Briggs,
respectively. They are both language independent concerning the programming lan-
guage, whereas they still use LATEX for typesetting. Nuweb is a rather minimalistic but
fast WEB approach with only four control sequences. Both noweb and nuweb offer no
pretty printing by default, but noweb is based on a system of tools called filters which
are connected through pipes. The current version comes with pretty printing filters for
C and Java (see the actual documentation).

Another descendant of an early version of CWEB is FWEB [29]. FWEB initially
was an abbreviation for “Fortran WEB”, but meanwhile FWEB supports not only For-
tran, but C, C++, Ratfor and TEX as well. These languages can be intermixed in one
project, while FWEB still supports pretty printing for the different languages. On the
other hand, FWEB is a rather complex piece of software with a 140 page user’s manual.

Ross Williams’ funnelWEB [53] is not only independent of the programming lan-
guage, but of the typesetting language as well. It defines own format macros, which can
be bound to arbitrary typesetting commands (currently for HTML and LATEX).

2.2 General drawbacks of WEB based literate programming tools

Though many of the initial problems of the WEB system have been solved in some of
the clones, their sheer number indicates that none of them is perfect.

One of the most controversial topics in the field of literate programming is pretty
printing wherepretty printingstands for syntax highlighting2 and code layout and in-
dentation. There are two questions here to consider: Is pretty printing desirable at all,
and if yes, how should the pretty printed code look like? The answer is often a matter
of personal taste, however there also exist some research results in this area like for
example [5].

From a practical point of view it must be stated that doing pretty printing is possible
for Pascal, although a look at the WEB sources will tell you that it is not an easy task.
Doing it for C is even harder3. Taking into account the fact thatweave usually processes
only a small piece of code, which itself even does not have to be syntactically correct,
it should be clear that pretty printing such code in a complex language like for example
C++ will be impossible.

To overcome these problems, special tags have been introduced by the various sys-
tems to support the pretty printing routines. But this clutters the program code in the
WEB file and even increases the problem of the documentation looking completely

2 Syntax highlightingdenotes the process of graphically highlighting the tokens of a program-
ming language.

3 The biggest part of CWEB consists of the pretty printing module. Recognition of keywords,
identifiers, comments, etc. is done by a hard coded shift/reduce bottom up parser.

440

different than the source. This can be annoying in a develop/run/debug cycle. As a con-
sequence, the use of pretty printing is discouraged. The only feasible solution could
be simple syntax highlighting instead of pretty printing, as it is done by many editors
nowadays.

Even without pretty printing and additional tags inserted into the program source,
the fact that the source code usually appears rearranged in the WEB file with respect to
the generated source file makes it very hard to extend or debug such a program. A few
lines of code laying closely together in the source file may be split up to completely
different places in the WEB file.

Once this could be called a feature, because it gave the programmer new means of
structuring his program code for languages like Pascal which offered no module system
or object hierarchy. As analysed in [9] it could be used to achieve a certain amount of
code and documentation reuse. However the WEB macro system could also be misused
by defining and using macros instead of defining and using functions in the underlying
programming language.

Another problem common to WEB systems is their “one source” policy. While this
may help to hold source code and documentation consistent, it breaks many other de-
velopment tools like debuggers, revision control systems and make utilities. Moreover,
it is nearly impossible for a programmer not familiar with a special WEB system to
debug, maintain or extend code devolved with that WEB.

Even the possibility of giving away only the tangled output of a WEB is not attrac-
tive. First of all, it is usually unreadable for humans4, and second this would break the
“one source” philosophy. It seems that most of the literate programming projects real-
ized until now have been one man projects. There is only one paper from Ramsey and
Marceau [38] which documents the use of literate programming tools in a team project.
Additionally, some references can be found about the use of literate programming for
educational purpose (see [8] and [44]).

The general impression confirms Van Wyk’s observation in [60] “... that one must
write one’s own system before one can write a literate program, and that makes [him]
wonder how widespread literate programming is or will ever become.” The question
he leaves to the reader is whether programmers are in general too individual to use
somebody else’s tools or if only individual programmers develop and use (their own)
literate programming systems. The answer seems to lie somewhere in between. Pro-
grammers are usually very individual and conservative concerning their programming
environment. There must be superior tools available to make them switch to a new
environment.

On the other hand, integrated development environments (IDEs) evolved strongly
during the last years and they now offer sophisticated navigation, syntax highlighting
and online help capabilities for free, thus making many of the features of a WEB system,
like indexing, cross referencing and pretty printing become obsolete (see section 3).
Finally the will to write documentation in a formatting language like TEX using a simple
text editor is constantly decreasing in the presence of WYSIWYG word processors.

4 NuWEB is an exception here, since it forwards source code into the tangled output without
changing its format.

441

2.3 Other program documentation systems

With the widespread use of Java a new program documentation system called JavaDoc
was introduced. JavaDoc [15] comes with the Java development kit and is thus available
for free to every Java programmer. The idea behind JavaDoc is quite different from that
of WEB, though it is based on the “one source” paradigm as well. JavaDoc is a tool
which extracts documentation from Java source files and produces formatted HTML
output. Consequently, JavaDoc is tied to Java as programming and HTML as typesetting
language5. By default JavaDoc parses Java source files and generates a document which
contains the signatures of all public and protected classes, interfaces, methods, and
fields. This documentation can be further extended by specially formatted comments
which may even contain HTML tags.

Because JavaDoc is available only for Java, Roland Wunderling and Malte Zöckler
created DOC++ [59], a tool similar to JavaDoc but for C++ as programming language.
Additionally to HTML, DOC++ can create LATEX formatted documentation as well.
Doxygen [16] by Dimitri van Heesch, which was initially inspired by DOC++, is cur-
rently the most ambitious tool of this type which can also produce output in RTF,
PDF and Unix man-page format. Both DOC++ and Doxygen can create a variety of
dependency-, call-, inclusion- and inheritance graphs, which may be included into the
documentation.

These new documentation tools are mainly useful for creating hierarchical, browesable
HTML documentations of class libraries and APIs. They are intended for interface de-
scriptions rather than the description of algorithms or implementation details. Although
some of them support LATEX, RTF or PDF output, they are not well suited for generating
printed documentation.

Another approach which must be mentioned in this chapter is Martin Knasmüller’s
“Reverse Literate Programming” system [22]. In fact it is an editor which supports fold-
ing and so calledactive text elements[34]. Active text elements may contain arbitrary
documentation, but also figures, links or popup buttons. All theactive textis ignored by
the compiler, so no tangle step is needed before compilation. Reverse Literate program-
ming has been implemented for the Oberon system [54].

The GRASP [18] system relies on source code diagramming and source code fold-
ing techniques in order to present a more comprehensible picture of the source code,
however without special support for program documentation or literate programming.
In GRASP, code folding may be done according to the programming language control
structure boundaries as well as for arbitrary, user-selected code parts.

3 Software documentation in the age of IDEs

Nowadays, most software development is done with the help of sophisticated IDEs
(Integrated Development Environments) like Microsoft Visual Studio [32], IBM Visual
Age [19], Borland JBuilder [6], NetBeans [35] or Source Navigator [40] to name just

5 Starting with Java 1.2, JavaDoc may be extended with so called “Doclets”, which allow
JavaDoc to produce output in different formats. Currently there are Doclets available for the
MIF, RTF and LATEX format (see [49]).

442

a few of them. These development environments organize the programming tasks in so
called projects, which contain all the source files, resources and libraries necessary to
build such a project.

One of the main features of these IDEs is their ability to parse all the files which
belong to a project and build a database out of that information. Because the files of
the project can be usually modified only through the builtin editor, the IDEs can always
keep track of changes in the source files and update the project database on the fly.

With the help of the project database, the IDEs can offer a lot of services to the user
like fast, qualified searching or dependency-, call-, and inheritance graphs. They allow
fast browsing of methods and classes and direct access from variables, method calls or
class instantiations to their definitions, respectively. Notice that all these features are
available online during the work on a project, in contrast to the tools like JavaDoc or
Doxygen mentioned in the previous section which provide this information only off-
line.

The new IDEs now deliver under such fancy names like “Code Completion” or
“Code Insight” features like syntax directed programming [20] or template based pro-
gramming which have been proposed already in the late seventies by [50,33]. In the
past, these systems couldn’t succeed because of two main reasons: they where to re-
strictive in the burden they put on the programmer and the display technology and com-
puting power have not been good enough6. However, the enhancements in the area of
user interfaces and the computational power available today allow even more: context
sensitive prompting of the user with the names of available methods or with the formal
arguments of a method, syntax highlighting and fast recompilation of affected source
code parts.

All this reduces the benefits of a printed, highly linked and indexed documentation
of a whole project. What is needed instead, additionally to the interface description pro-
vided by the IDE, is a description of the algorithms and of certain complex code parts.
One step into this direction was Sametinger’s DOgMA [41,42] tool which is an IDE
that also allows writing documentation. DOgMA, like modern IDEs today, maintains
an internal database of the whole parsed project. It allows the programmer to reference
arbitrary parts of the source code in the documentation while DOgMA automatically
creates and keeps the relevant links between the source code parts and the documenta-
tion up to date. These links allow a hypertext like navigation between source code and
documentation.

While it seems that modern IDEs adopted a lot of DOgMA’s browsing capabilities,
they didn’t adopted its literate programming features. However, systems like NetBeans
[35], SourceNavigator [40] or VisualAge [48]) offer an API for accessing the internal
program database. This at least would allow one to create extensions of these systems
in order to support program documentation in a more comfortable way.

The most ambitious project in this context in the last few years was certainly the
“Intentional Programming” project lead by Charles Simonyi [46,47] at Microsoft. It
revitalized the idea of structured programming and propagated the idea of programs be-
ing just instantiations of intentions. The intentions could be written with a fully fledged

6 A good survey about the editor technology available at the beginning of the eighties can be
found in [31].

443

WYSIWYG editor which allowed arbitrary content to be associated with the source
code. Of course, this makes it easy to combine and maintain software together with the
appropriate documentation. Some screen-shots of this impressive system can be found
in chapter 11 of [11], which is dedicated solely to Intentional Programming.

4 Software documentation and XML

With the widespread use of XML [57] in the last few years it is not surprising that
various XML formats have been proposed to break out of the “ASCII Straitjacket” [1]
in which programming languages are caught until now. While earlier approaches to
widen the character set out of which programs are composed like [1] failed mainly
because of the lack of standards in this area, the standardization of UNICODE [51] and
XML may change the situation now.

There exist two concurring approaches. While for example JavaML [4] tries to de-
fine an abstract syntax tree representation of the Java language in XML (which, by the
way, is not dissimilar from the internal representation proposed by the early syntax di-
rected editors) the CSF [43] approach tries to define an abstract XML format usable
by most of the current programming languages. Both have advantages as well as dis-
advantages. While the first one suffers from it’s dependency on a certain programming
language, the second one will always fail to represent every exotic feature of every
given programming language.

A third, minimalistic approach could ignore the syntax of the programming lan-
guage and just store program lines and comments into as few as two different XML
elements. Such an encoding has been proposed by E. Armstrong [3].

However, independent of the encoding’s actual representation, once that such an en-
coding would be available, literate programming and program documentation systems
could greatly benefit from it. They could reference distinct parts of a source file in a
standard way or they could insert special attributes or even elements into the XML doc-
ument which could be otherwise ignored by other tools like compilers or build systems.
Standard tools could be used to process, edit and display the source files, and internal
as well as external links could be added to the source code.

Peter Pierrou presented in [37] an XML literate programming system. In fact it
consists of an XML editor which allows one to store source code, documentation and
links between them into an XML file. A tangle script is used to extract the source code
out of the XML file. The system is very similar to the reverse literate programming tool
proposed by Knasm̈uller, with the only difference that it is independent of the source
language and stores its data in XML format. An earlier, but very similar effort described
in [14] used SGML as markup language for storing documentation and source code.

Anthony Coates introduced xmLP [10], a literate programming system which uses
some simple XML elements as markup. The idea is to use these elements together with
other markup elements, for example those defined in XHTML [56], MathML [55] or
DocBook [52]. XSLT [58] stylesheets are then used in order to produce the woven
documentation and the tangled output files.

Oleg Kiselyov suggested the representation of XML as an s-expression in Scheme
called SXML [21]. SXML can be used to write literate XML programs. Different

444

Scheme programs (also called stylesheets in this case) are available to convert from
SXML to LATEX, HTML or pure XML files.

Some of the approaches presented in this section are quite new, but the wide ac-
ceptance of XML also in the area of the source code representation of programming
languages could give new impulses to the literate programming community. A good
starting point for more information on literate programming and XML is the Web site
of the OASIS consortium, which hosts a page specifically dedicated to this topic [36].

5 Overview of theProgDOC system

With this historical background in mind,ProgDOC tries to combine the best of the
traditional WEB and the new program documentation systems. It releases the “one
source” policy, which was so crucial for all WEB systems, thus giving the program-
mer maximum freedom to arrange his source files in any desirable way. On the other
hand, the consistency between source code and documentation is preserved by special
handles, which are present in the source files as ordinary comments7 and which can be
referenced in the documentation.ProgDOC’s weave utilitypdweave incorporates the
desired code parts into the documentation.

.pd
file

.java
file

file
.tex

.cpp
file file

.xml

latex

pdflatex

latex2html

.dvi
file

file
.pdf

file
.html

pdweave

pdhighlight pdlsthighlight pdhighlight

Fig. 1. Overview of theProgDOC system.

But let us start with an example. Suppose we have a C++ header file calledClass-

Defs.h with some class declarations. Following this section you can see a verbatim
copy of the file:

class Example1 {
private :

int x;
public :

explicit Example1(int i) : x(i) {}
};

class Example2 {
private :

double y;
public :

explicit Example2(double d) : y(d) {}
explicit Example2(int i) : y(i) {}
explicit Example2(long i) : y(l) {}
explicit Example2(char c) : y((int)c) {}
void doSomething(); // do something

};

With ProgDOC, the class may be written as follows:

7 As far as known to the authors, any computer language offers comments, so this seems to be
no real limitation.

445

// BEGIN Example1
class Example1 {
private :

int x;
public :

explicit Example1(int i) : x(i) {}
};
// END Example1

// BEGIN Example2
class Example2 {
// ...
private :

double y;
// ...
public :

// BEGIN Constructors
explicit Example1(double d) : y(d) {}
explicit Example2(int i) : y(i) {}
explicit Example2(long i) : y(l) {}
explicit Example2(char c) : y((int)c) {}
// END Constructors
void doSomething(); // do something

};
// END Example2

The only changes introduced so far are the comments at the beginning and at the end
of each class declaration. These comments, which of course are non-effective for the
source code, enable us to use the new\sourceinput[options]{ filename}{ tagname}
command in the LATEX documentation. This will result in the inclusion and syntax high-
lighting of the source code lines which are enclosed by the “// BEGIN tagname” and
“ // END tagname” lines, respectively.

Consequently the LATEX code presented in
the following box

‘‘... next we present the declaration
of the class {\tt Example1}:

\sourceinput[fontname=pcr, fontsize=7,
listing, linenr, label=Example1]
{ClassDefs.h}{Example1}

as you can see, there is no magic at
all using the {\tt \symbol{92}
sourceinput} command ...’’

will result in content of the box shown on
the right side:

“... next we present the declaration of the
classExample1 :

Listing 1: ClassDefs.h[Line 2 to 7]

class Example1 {

private :

int x;

public :

explicit Example1(int i) : x(i) {}

};

as you can see, there is no magic at all
using the\sourceinput command ...”

The source code appears nicely highlighted, while its indentation is preserved. It is
preceded by a caption line similar to the one known from figures and tables which in
addition to a running number also contains the file name and the line numbers of the
included code. Furthermore, the code sequence can be referenced everywhere in the
text with a usual\ref command (e.g. see Listing 1). Notice that the boxes shown here
are used for demonstrational purpose and are not produced by theProgDOC system.

As shown in Figure 1,ProgDOC isn’t implemented in pure LATEX. Instead, the
weaver componentpdweave is an AWK [2] script while the syntax highlighterpdhigh-

light is a program generated withflex [13]. It was originally based on a version of
Norbert Kiesel’sc++2latex filter. It not only marks up the source code parts for LATEX,
but also inserts special HTML markup into the LATEX code it produces. In that way an
HTML-version of the documentation may be created with the help of Nikos Drakos’
and Ross Moore’slatex2html [12] utility. However, pdweave is not restricted on
pdhighlight as highlighter. It may use arbitrary highlighters which conform to the

446

interface expected by the weaver. And indeed,ProgDOC provides a second highlighter,
calledpdlsthighlight , which is in fact just a wrapper for the LATEX listings package
[17].

Listings 2 and 3 demonstrate some other features ofProgDOC like displaying
nested code sequences, hiding of code parts which can be thought of as a kind of code
folding [22,18] and linking these parts together by either references or active links in
HTML/PDF output. FurthermoreProgDOC is highly customizable. See theProgDOC
manual [45] for a complete reference.

Listing 2: ClassDefs.h[Line 11 to 24]

class Example2 {

...

public :

<see Listing 3 on page 447 >

void doSomething(); // something

};

Listing 3: ClassDefs.h[Line 18 to 21]
(Referenced inListing 2 on page447)

explicit Example2(double d) : y(d) {}

explicit Example2(int i) : y(i) {}

explicit Example2(long l) : y(l) {}

explicit Example2(char c) : y((int)c) {}

6 Conclusions

This paper listed and discussed most of the literate programming and program docu-
mentation systems which have been proposed during the past 20 years and it introduced
ProgDOC, the authors’ own program documentation system. Even thoughProgDOC
is a fully functioning system it also suffers from one drawback criticized in some of
the other systems: its tight coupling with LATEX as typesetting system. ButProgDOC
should be thought of as just one incarnation of a very simple, yet powerful idea of keep-
ing source code and documentation synchronised by connecting them through links.
The authors’ opinion is that nowadays programs are best written with sophisticated
IDEs and documentation is best written with powerful word processors, where both of
these tools are best suited for their own specific task.

However, importing parts of the source code into the documentation should be just
as easy as the import of tables or figures. With today’s technology this is only possible
with special tools, likeProgDOC. But it is not hard to imagine that one day IDEs will
export source code just the way spreadsheet programs export tables. The emerging use
of the XML technology may be helpful for this purpose.

7 Acknowledgements

We want to thank all the users who usedProgDOC and supplied feedback information
to us. Among others these are Martin Gasbichler, Blair Hall and Patrick Crosby. We
are truly indebted to Holger Gast, who always answered patiently all our questions and
solved many of our problems concerning TEX.

447

References

1. P. W. Abrahams.Typographical Extensions for Programming Languages: Breaking out of
the ASCII Straitjacket.ACM SIGPLAN Notices, Vol. 28, No. 2, Feb. 1993

2. A.W. Aho, B.W. Kernighan and P. J.Weinberger.The AWK Programming Language.
Addison-Wesley, 1988

3. E. Armstrong.Encoding Source in XML - A strategig Analysis.
http://www.treelight.com/software/encodingSource.html

4. G. J. Badros.JavaML: A Markup Language for Java Source Code.9th Int. WWW-
Conference, Amsterdam, May 2000

5. Ronald M. Baecker, Aaron Marcus.Human Factors and Typography for More Readable
Programs.Addison-Wesley, 1990

6. Borland Software Corporation.Borland JBuilder.http://www.borland.com/jbuilder
7. Preston Briggs.nuWeb, http://ctan.tug.org/tex-archive/web/nuweb
8. Bart ChildsLiterate Programming, A Practitioner’s ViewTUGboat, Volume 13, No. 2,

1992,http://www.literateprogramming.com/farticles.html
9. B. Childs and J. Sametinger.Analysis of Literate Programs from the Viewpoint of Reuse.

Software - Concepts and Tools, Vol. 18, No. 2, 1997,http://www.literateprogramming.
com/farticles.html

10. A. B. Coates and Z. RendonxmLP - a Literate Programming Tool for XML & Text.Extreme
Markup Languages, Montreal, Quebec, Canada, August 2002,http://xmlp.sourceforge.
net/2002/extreme/

11. K. Czarnecki and U. W. Eisenecker.Generative Programming.Addison-Wesley, 2000
12. by Nikos Drakos and Ross Moore.Latex2HTML.http://saftsack.fs.uni-bayreuth.de/

˜latex2ht/ or: http://ctan.tug.org/ctan/tex-archive/support/latex2html
13. Free Software FoundationThe Fast Lexical Analyzer.http://www.gnu.org/software/flex/
14. D.M. German, D.D. Cowan and A. Ryman.SGML-Lite – An SGML-based Programming

Environment for Literate Programming.ISACC, Oct. 1996,http://www.oasis-open.org/
cover/germanisacc96-ps.gz

15. J. Gosling, B. Joy and G. Steele“Java Language Specification”Addison-Wesley, 1996
16. Dimitri van Heesch.Doxygen.http://www.doxygen.org
17. Carsten Heinz“The Listings package”, ftp://ftp.dante.de/tex-archive/help/Catalogue/

entries/listings.html
18. T. D. Hendrix, J. H. Cross II, L. A. Barowski and K. S. Mathias.Visual Support for Incre-

mental Abstraction and Refinement in Ada95.SIGAda Ada Letters, Vol. 18, No. 6, 1998
19. IBM Corporation.Visual Age C++.http://www-3.ibm.com/software/ad/vacpp
20. A. A. Khwaja and J. E. Urban.Syntax-Directed Editing Environments: Issues and Features.

ACM SIGAPP Symposium on Applied Computing, Indianapolis, Indiana, 1993
21. O. Kiselyov.SXML Specification.ACM SIGPLAN Notices, Volume 37, Issue 6, June 2002

http://pobox.com/˜oleg/ftp/Scheme/xml.html
22. M. Knasm̈uller. Reverse Literate Programming.Proc. of the 5th Software Quality Confer-

ence, Dundee, July 1996
23. Donald E. KnuthLiterate ProgrammingThe Computer Journal, Vol. 27, No. 2, 1984
24. Donald E. KnuthThe TEXbookAddison-Wesley, Reading, Mass., 11. ed., 1991
25. Donald E. KnuthTEX: The ProgramAddison-Wesley, Reading, Mass., 4. ed., 1991
26. Donald E. KnuthLiterate ProgrammingCSLI Lecture Notes, no. 27, 1992 or Cambridge

University Press
27. Donald. E. Knuth and Silvio LevyThe CWEB System of Structured Documentation

Addison-Wesley, Reading, Mass., 1993
28. Uwe Kreppel.WebWeb.http://www-ca.informatik.uni-tuebingen.de/people/kreppel/

448

http://www.treelight.com/software/encodingSource.html
http://www.borland.com/jbuilder
http://ctan.tug.org/tex-archive/web/nuweb
http://www.literateprogramming.com/farticles.html
http://www.literateprogramming.com/ farticles.html
http://www.literateprogramming.com/ farticles.html
http://xmlp.sourceforge.net/2002/extreme/
http://xmlp.sourceforge.net/2002/extreme/
http://saftsack.fs.uni-bayreuth.de/~latex2ht/
http://saftsack.fs.uni-bayreuth.de/~latex2ht/
 http://ctan.tug.org/ctan/tex-archive/support/latex2html
http://www.gnu.org/software/flex/
http://www.oasis-open.org/cover/germanisacc96-ps.gz
http://www.oasis-open.org/cover/germanisacc96-ps.gz
http://www.doxygen.org
 ftp://ftp.dante.de/tex-archive/help/Catalogue/entries/listings.html
 ftp://ftp.dante.de/tex-archive/help/Catalogue/entries/listings.html
http://www-3.ibm.com/software/ad/vacpp
http://pobox.com/~oleg/ftp/Scheme/xml.html
 http://www-ca.informatik.uni-tuebingen.de/people/kreppel/

29. John Krommes.fWeb.http://w3.pppl.gov/˜krommes/fweb.html
30. Marc van Leeuwen.CWebx.http://wallis.univ-poitiers.fr/˜maavl/CWEBx/
31. N. Meyrowitz and A. van Dam.Interactive Editing Systems: Part I and II.Computing

Surveys, Vol. 14, No. 3, Sept. 1982
32. Microsoft Corporation.Visual Studio.http://msdn.microsoft.com/vstudio
33. J. Morris and M. Schwartz.The Design of a Language- Directed Editor for Block-Structured

Languages.SIGLAN/SIGOA Symp. on text manipulation, Portland, 1981
34. H. Mössenb̈ock and K. Koskimies.Active Text for Structuring and Understanding Source

Code.Software - Practice and Experience, Vol. 27, No. 7, July 1996
35. NetBeans Project.The NetBeans Platform and IDE.http://www.netbeans.org
36. The Oasis Consortium.SGML/XML and Literate Programming.http://www.oasis-open.

org/cover/xmlLitProg.html
37. P. Pierrou.Literate Programming in XML.Markup Technologies, Philadelphia, Pensylva-

nia, US, Dec. 1999,http://www.literateprogramming.com/farticles.html
38. N. Ramsey and C. MarceauLiterate Programming on a Team ProjectSoftware - Practice

& Experience, 21(7), Jul. 1991,http://www.literateprogramming.com/farticles.html
39. Norman RamseyLiterate Programming SimplifiedIEEE Software, Sep. 1994, p. 97http:

//www.eecs.harvard.edu/˜nr/noweb/intro.html
40. Red Hat, Inc.Source Navigator.http://sourcenav.sourceforge.net
41. J. SamtingerDOgMA: A Tool for the Documentation & Maintenance of Software Systems.

Tech. Report, 1991, Inst. fur Wirtschaftsinformatik, J. Kepler Univ., Linz, Austria
42. J. Samtinger and G. PombergerA Hypertext System for Literate C++ Programming.JOOP,

Vol. 4, No. 8, SIGS Publications, New York, 1992
43. S. E. Sandø, The Software Development FoundationCSF Specification.http://sds.

sourceforge.net
44. Stephan Shum and Curtis CookUsing Literate Programming to Teach Good Programming

Practices25th. SIGCSE Symp. on Computer Science Education, 1994, p. 66-70
45. Volker SimonisTheProgDOC Program Documentation Systemhttp://www.progdoc.org
46. C. Simonyi.Intentional Programming - Innovation in the Legacy Age.IFIP WG 2.1 meet-

ing, june 4th, 1996
47. C. Simonyi.The future is intentional.IEEE Computer Magazine, Vol. 32, No. 5, May 1999
48. D. Soroker, M. Karasick, J. Barton and D. Streeter.Extension Mechanisms in Montana.

Proc. of the 8th Israeli Conf. on Computer Based Systems and Software Engineering, 1997
49. Sun Microsystems, Inc.The Doclets API.http://java.sun.com/j2se/javadoc/
50. T. Teitelbaum and T. Reps.The Cornell Program Synthesizer: A Syntax-Directed Program-

ming Environment.Communications of the ACM, Vol. 24, No. 9, Sept. 1981
51. The Unicode Consortium.The Unicode Standard 3.0.Addison-Wesley, Reading, Mass.,

2000,http://www.unicode.org/
52. N. Walsh and L. Muellner.DocBook: The Definitive Guide.O Reilly & Associates, 1999,

http://www.oasis-open.org/committe/docbook
53. Ross N. Williams.funnelWeb.http://www.ross.net/funnelweb/
54. N. Wirth and J. Gutknecht.The Oberon System.Software - Practice & Experience, 19(9),

1989, p. 857-893
55. World Wide Web Consortium.Mathematical Markup Language.http://www.w3.org/Math
56. WorldWideWeb Consortium.Extensible Hypertext Markup Language.http://www.w3.org/

MarkUp
57. The World Wide Web Consortium.Extensible Markup Language.http://www.w3.org/XML
58. World Wide Web Consortium.Extensible Stylesheet Language Transformations.http:

//www.w3.org/Style/XSL
59. R. Wunderling and M. Z̈ockler.DOC++. http://www.zib.de/Visual/software/doc++/
60. Christopher J. Van WykLiterate Programming Column.Communications of the ACM,

Volume 33, Nr. 3, March 1990. p. 361-362

449

http://w3.pppl.gov/~krommes/fweb.html
http://wallis.univ-poitiers.fr/~maavl/CWEBx/
http://msdn.microsoft.com/vstudio
http://www.netbeans.org
http://www.oasis-open.org/cover/xmlLitProg.html
http://www.oasis-open.org/cover/xmlLitProg.html
http://www.literateprogramming.com/farticles.html
http://www.literateprogramming.com/farticles.html
http://www.eecs.harvard.edu/~nr/noweb/intro.html
http://www.eecs.harvard.edu/~nr/noweb/intro.html
http://sourcenav.sourceforge.net
http://sds.sourceforge.net
http://sds.sourceforge.net
http://www.progdoc.org
http://java.sun.com/j2se/javadoc/
http://www.unicode.org/
http://www.oasis-open.org/committe/docbook
http://www.ross.net/funnelweb/
http://www.w3.org/Math
http://www.w3.org/MarkUp
http://www.w3.org/MarkUp
http://www.w3.org/XML
http://www.w3.org/Style/XSL
http://www.w3.org/Style/XSL
http://www.zib.de/Visual/software/doc++/

	ProgDoc - a New Program Documentation System

